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OBJECTIVE – Track targets in a distributed manner via a sensor 
network in the presence of faults (cyber-attacks) 

Current Algorithms for Target Tracking 

Faults/Cyber attacks in Sensor Network 
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Sensors 

Target current location 

Target trajectory 

𝑥 𝑘 + 1 = 𝐴 𝑘 𝑥 𝑘 + 𝐵 𝑘 𝛾 𝑘 ;      

  𝑥 0 ~𝒩 0, P0 , 𝛾 𝑘 ~𝒩 0, Q    

𝑧 𝑘 = 𝐻 𝑘 𝑥 𝑘 + 𝜐 𝑘          𝜐 𝑘 ~𝒩(0, R) 

Target Dynamic Equation 

Sensor Model 

CENTRALIZED KALMAN FILTER KALMAN CONSENSUS FILTER 

Notation: (x+) and (x-)  : It denote estimate of x 
after and before kth time step  

 
Update 

Phase 
 
 
 
 
 
 

𝑥 + 𝑘 =  𝑥 − 𝑘 + 𝑀 𝑦 − 𝑆𝑥 − 𝑘  

𝑆 =   𝐻1 
𝑇 𝑅1 

−1𝐻1 +   𝐻2 
𝑇 𝑅2 

−1𝐻2

𝑦 =  𝐻1 
𝑇 𝑅1 

−1𝑧1 +  𝐻2 
𝑇 𝑅2 

−1𝑧2

𝑀 =  𝑊 + 𝑆 −1

 

  
Predict 

Phase  
𝑊(𝑘 + 1) =  𝐴𝑀𝐴𝑇 +  𝐵𝑄𝐵𝑇 −1

𝑥 − 𝑘 + 1 ← 𝐴𝑥 𝑖
+ 𝑘 

 

 
 

Step 1: Each node will calculate ui and Ui and 
transmit it to the neighbor. 

Step 2: Fuse information: . 

Step 3: Update the estimate and add a consensus term  

Step 4: Predict the next position (same as KF) 

Consensus 
term 

Standard Kalman 
Update 

𝑢𝑖 =   𝐻𝑖 
𝑇 𝑅𝑖 

−1𝑧𝑖  
𝑈𝑖 =   𝐻𝑖 

𝑇 𝑅𝑖 
−1𝐻𝑖  

 
 

𝑦𝑖 =   𝑢𝑖 ′

𝑖 ′ 𝜖  𝒩𝐶𝑖
⋃{𝑖}

 

𝑆𝑖 =   𝑈𝑖 ′

𝑖 ′ 𝜖  𝒩𝐶𝑖
⋃{𝑖}

 

 

𝑥 𝑖
+ 𝑘 =  𝑥 𝑖

− 𝑘 + 𝑀𝑖 𝑦𝑖 − 𝑆𝑖𝑥 𝑖
− 𝑘  

+ 𝛾𝑊𝑖(𝑘)−1   𝑥 𝑖 ′
− 𝑘 − 𝑥 𝑖

− 𝑘  

𝑖 ′ 𝜖  𝒩𝐶𝑖

 

𝑀𝑖 =  𝑊𝑖 + 𝑆𝑖 
−1 

Cyber attacks can cause an unacceptable performance in the 
surveillance parameter of the sensor.  

Surveillance 
Parameter  

Fault 
Stochastic 
Language 

Latency Delayed transmission/reception Bias 

Accuracy Transmission of states with noise Covariance 

Integrity Incorrect Data Spike 

Continuity No transmission/ reception No data 

Fault detection Techniques 

1 2 

3 

4 

Sensor Network 

Step 2: Calculate sample covariance of residue by 
some previous measurements (say k)  

Step 3: Define a parameter called residual 
compatibility  

Step 4: Check the conditions on rC  (sensor is good if rC ~ 1) 

𝑟(𝑘) = 𝑧(𝑘) − 𝐻𝑥 −(𝑘) 

𝐶𝑟 𝑘 = 𝐻(𝑊− 𝑘 )−1𝐻𝑇 + 𝑅 

 

𝐶 𝑟 𝑘 =  
1

𝐿
 𝑟(𝑖)𝑟(𝑖)𝑇

𝑘

𝑖=𝑘−𝐿+1

 

𝑟𝐶𝑝(𝑘) =
 𝑟𝑝(𝑘) 

 𝐶𝑟(𝑘)(𝑝, 𝑝)
 

Note: Measurement Data of only one sensor is required for this method  

Method 2: Consistency Checking 

Step 1: Calculate difference parameter 

Step 2: if D12, D13 and D14 are greater than a threshold then sensor 1 is faulty. Similar 
checks can be introduced for other sensors too. 

Note: Measurement Data of more than one sensor is required for this method 

𝐷12 =  𝑧1 − 𝑧2 ), 𝐷13 =  𝑧1 − 𝑧2 ), 𝐷14 =  𝑧1 − 𝑧4 ) 

𝐷23 =  𝑧2 − 𝑧3 ), 𝐷24 =  𝑧2 − 𝑧4 ), 𝐷34 =  𝑧3 − 𝑧4 ) 

Results  

Method 1: Covariance Matching 

ROBUST KALMAN CONSENSUS FILTER 

Spike Detection: Use method 1 and method 2 on each node. 

Covariance Detection: Introduce a separate Kalman Filter on each node and use 
method 2 

No Data: KCF works with asynchronous communication 
-  Field of View of all the sensors: 500 x 500 grid  

- Target is tracked for 50 time instants 

Faulty Sensor: Constant Fault (a constant 
value) at iteration no. 6, 10 , 31-40 

𝐻 =   
1 0 0 0
0 1 0 0

 , 𝑅 =   
10 0
0 10

  , 

𝐴 =  

1 0 0.5 0
0 1 0 0.5
0 0 1 0
0 0 0 1

  , 𝐵 = 𝐈𝟒 , 𝑄 =  

30 3 3 3
3 30 3 3
3 3 30 3
3 3 3 30

  

1 2 3 4 5 

Step 1: Calculate residue and theoretical covariance 
of the residue. 


