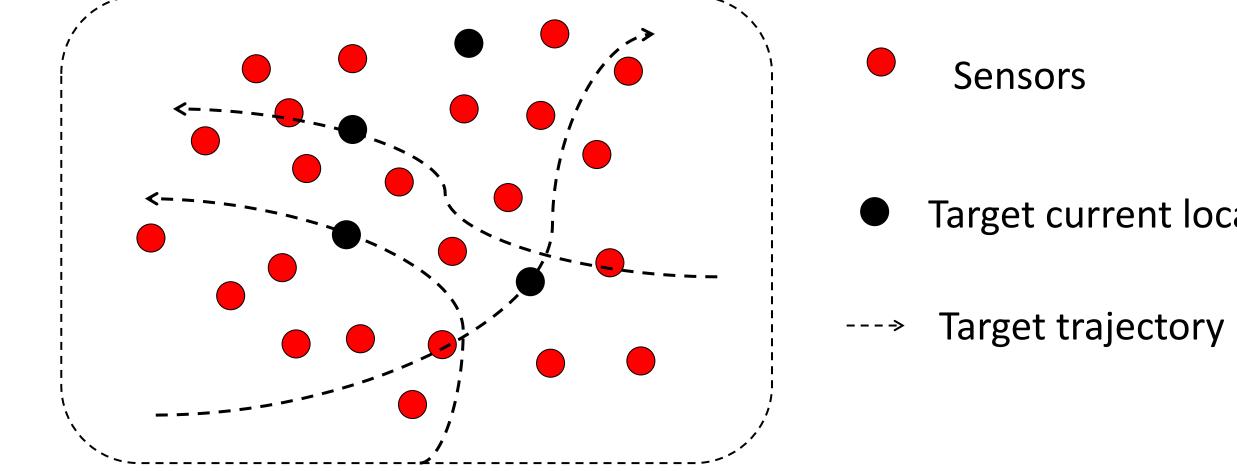


The Center for Education and Research in Information Assurance and Security


Distributed Fault Detection and Isolation for Kalman Consensus Filter

Kartavya Neema, Dr. Daniel DeLaurentis

School of Aeronautics and Astronautics, Purdue University

Overview

OBJECTIVE – Track targets in a distributed manner via a sensor network in the presence of faults (cyber-attacks)

Faults/Cyber attacks in Sensor Network

Cyber attacks can cause an unacceptable performance in the surveillance parameter of the sensor.

Surveillance Parameter	Fault	Stochastic Language
Latency	Delayed transmission/reception	Bias
Accuracy	Transmission of states with noise	Covariance
Integrity	Incorrect Data	Spike
Continuity	No transmission/ reception	No data

- Target current location

Current Algorithms for Target Tracking

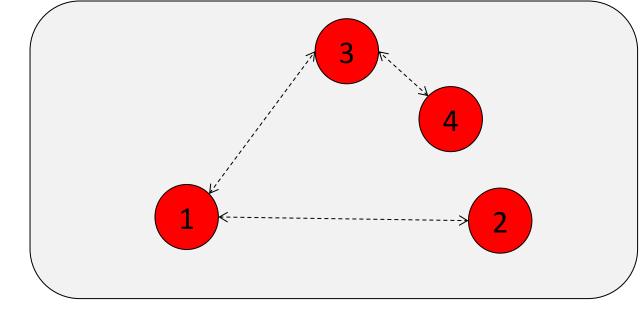
Target Dynamic Equation

 $x(k+1) = A(k)x(k) + B(k)\gamma(k);$ $x(0) \sim \mathcal{N}(0, \mathbf{P}_0), \gamma(k) \sim \mathcal{N}(0, \mathbf{Q})$

Sensor Model z(k) = H(k)x(k) + v(k)**CENTRALIZED KALMAN FILTER**

Update Phase $\begin{bmatrix}
\hat{x}^{+}(k) = \hat{x}^{-}(k) + M(y - S\hat{x}^{-}(k)) \\
S = (H_{1})^{T}(R_{1})^{-1}H_{1} + (H_{2})^{T}(R_{2})^{-1}H_{2} \\
y = (H_{1})^{T}(R_{1})^{-1}z_{1} + (H_{2})^{T}(R_{2})^{-1}z_{2}
\end{bmatrix}$

 $M = (W + S)^{-1}$


KALMAN CONSENSUS FILTER

 $v(k) \sim \mathcal{N}(0, \mathbf{R})$

Step 1: Each node will calculate u_i and U_i and transmit it to the neighbor.

 $\left[W(k+1) = (AMA^T + BQB^T)^{-1}\right]$ Predict Phase $\hat{x}^{-}(k+1) \leftarrow A\hat{x}_{i}^{+}(k)$

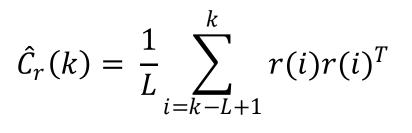
Notation: (x^+) and (x^-) : It denote estimate of x after and before kth time step

 $u_{i} = (H_{i})^{T} (R_{i})^{-1} z_{i}$ $U_{i} = (H_{i})^{T} (R_{i})^{-1} H_{i}$

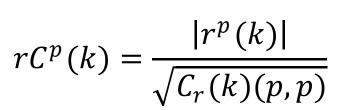
Step 2: Fuse information: . $y_i = \sum_{i' \in \mathcal{N}_{C_i} \cup \{i\}} u_{i'}$ $S_i = \sum U_{i'}$ $i' \in \overline{\mathcal{N}_{C_i}} \cup \{i\}$

Step 3: Update the estimate and add a consensus term Standard Kalman $\hat{x}_{i}^{+}(k) = \hat{x}_{i}^{-}(k) + M_{i}(y_{i} - S_{i}\hat{x}_{i}^{-}(k)) \leftarrow$ Update

Fault detection Techniques

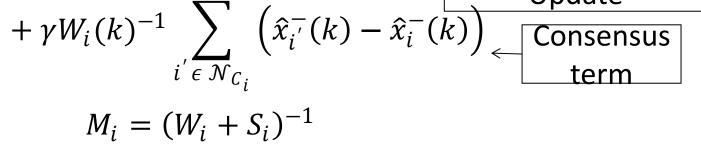

Method 1: Covariance Matching

Step 1: Calculate residue and **theoretical covariance** of the residue.


 $r(k) = z(k) - H\hat{x}^{-}(k)$

 $C_r(k) = H(W^-(k))^{-1}H^T + R$

Step 2: Calculate sample covariance of residue by some previous measurements (say k)


Step 3: Define a parameter called residual compatibility

Step 4: Check the conditions on rC (sensor is good if rC ~ 1)

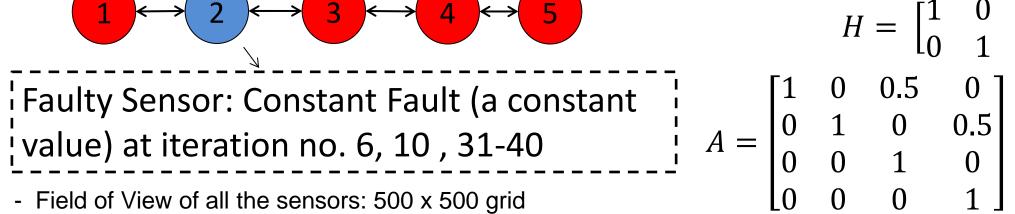
Note: Measurement Data of only one sensor is required for this method

Method 2: Consistency Checking

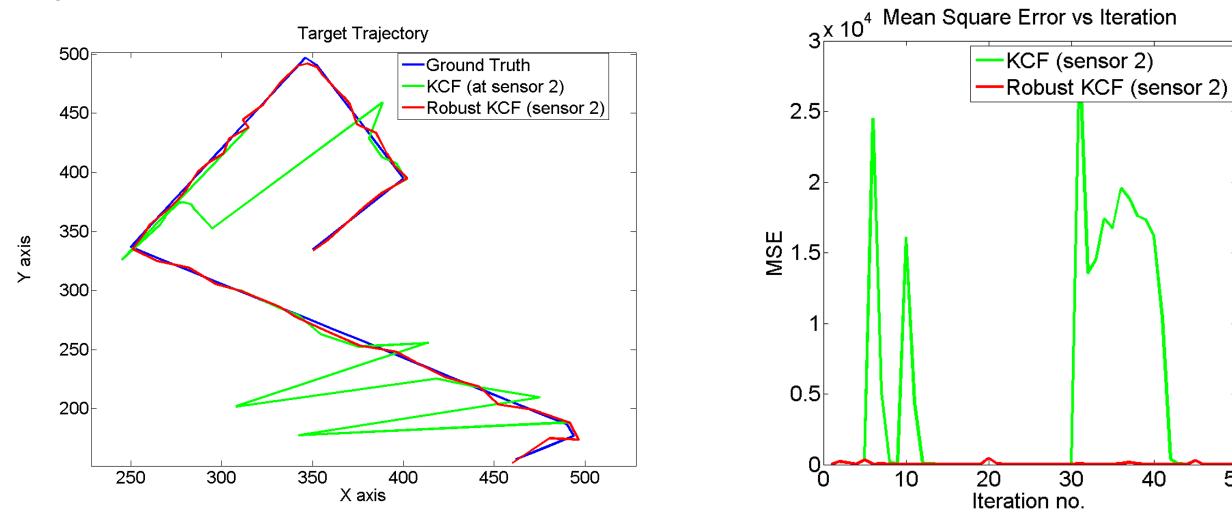
Step 4: Predict the next position (same as KF)

 $H = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, R = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix},$

 $A = \mathbf{I_4}, Q = \begin{bmatrix} 3\\3\\3 \end{bmatrix}$


50

3 3


30_

Sensor Network

Results

- Target is tracked for 50 time instants

 $D_{12} = |z_1 - z_2|, D_{13} = |z_1 - z_2|, D_{14} = |z_1 - z_4|$ $D_{23} = |z_2 - z_3|, D_{24} = |z_2 - z_4|, D_{34} = |z_3 - z_4|$ Step 1: Calculate difference parameter

Step 2: if D₁₂, D₁₃ and D₁₄ are greater than a threshold then sensor 1 is faulty. Similar checks can be introduced for other sensors too.

Note: Measurement Data of more than one sensor is required for this method

ROBUST KALMAN CONSENSUS FILTER

Spike Detection: Use method 1 and method 2 on each node.

Covariance Detection: Introduce a separate Kalman Filter on each node and use method 2

No Data: KCF works with asynchronous communication

Contact and references

Dr. Daniel DeLaurentis Associate Professor School of Aeronautics and Astronautics Purdue University, West Lafayette, IN ddelaure@purdue.edu

Kartavya Neema Ph.D Candidate School of Aeronautics and Astronautics Purdue University, West Lafayette, IN kneema@purdue.edu

